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1    Motivation 

This grant has focussed on the development of new techniques for very rapid 
and repeated evaluation of outputs of elliptic partial differential equations. The 
goal is to develop methods that are sufficiently fast to permit general design 
and optimization studies, that is, full exploration of the design space of interest. 
Initially we approached the problem through "computer-simulation surrogates": 
input-output pair interpolations validated via statistical measures. However, 
these surrogates degraded very rapidly with increasing design-space dimension, 
both as regards their approximation properties and also in terms of the relevance 
of the probabilistic validation statement. We thus turned to a second approach 
which, because it is based on an underlying state-space representation, fares 
much better with increasing dimensionality; furthermore, the associated error 
estimates are no longer statistical, and thus much more useful in practice. In this 
report we motivate and explain these techniques in a particular (simple) context, 
and also indicate the various extensions that have been developed in order to 
treat a larger class of problems. This report (minus this paragraph) has also 
appeared recently in the SIAM SIAG/OPT newsletter Volume 11, Number 2. 

To motivate and illustrate our methods we consider a specific example: a 
thermal fin. The fin, shown in Figure 1, consists of a central "post" and four 
"subfins;" the fin conducts heat from a prescribed uniform flux "source" at the 
root, rr0ot, through the large-surface-area subfins to surrounding flowing air. 
The fin is characterized by seven design parameters, or "inputs," /ieDc M-p=7, 
where fil = kl, i = 1,..., 4, /J,

5
 = Bi, /J,

6
 = L, and /J,

7
 = t. Here kl is the thermal 

conductivity of the ith subfin (normalized relative to the post conductivity); Bi is 
the Biot number, a nondimensional heat transfer coefficient reflecting convective 
transport to the air at the fin surfaces; and L and t are the length and thickness 
of the subfins (normalized relative to the post width). The performance metric, 
or "output," s G IR, is chosen to be the average temperature of the fin root 
normalized by the prescribed heat flux into the fin root. In order to optimize 
the fin design, we must be able to evaluate s(ji) repeatedly and rapidly. 

xThe material presented here is work performed in collaboration with Professor Yvon Ma- 
day of University of Paris VI and reported in greater detail in references [1, 2, 3, 4]. 
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Figure 1 

= £°{u{p)), where £°(v) is 
■ and u{p) is the tempera- 

We can express our input-output relationship as s 
a (continuous) linear functional — £°{v) = Jr v — 

ture distribution within the fin. (The temperature field is of course a function of 
the spatial coordinate, x; we explicitly indicate this dependence only as needed.) 
The temperature distribution u(p) £ Y satisfies the elliptic partial differential 
equation describing heat conduction in the fin, 

a(u, v; p) = £(v), Vv £ Y; (1) 

a(u,v;p) is the weak form of the Laplacian, and £(v) reflects the prescribed 
heat flux at the root. Here Y is the appropriate Hilbert space with associated 
inner product (•, -)y and induced norm || • ||y 2. The bilinear form a(-,-;p) 
is symmetric, a(w,v;p) = a(v,w\p),\fw,v € Y2,Vp £ V; uniformly continu- 
ous, \a(w,v;p)\ < 7||w||y||'y||y,Vw;,u £ Y2,Vp £ V; and coercive, a||u||y < 
a(v,v;p),\/v £ Y,\/p £ V. Here a and 7 are strictly positive real constants. 
Finally, the form £(v) is a linear bounded functional; for our choice of scaling 
and output, £°(v) = £(v), which we will exploit to simplify the exposition. 

It can further be shown for our problem that a can be expressed as 

Q 

a{w,v;p) =^2aq(p)aq(w,v),Vw,v £ Y2,Vp £ V, (2) 
q=\ 

for appropriately chosen functions aq:V —> R and associated /^-independent 
bilinear forms aq:Y xY —>IR, q = l,...,Q. Note that we pose our problem on 
a fixed fin reference domain ft in order to ensure that the parametric dependence 
on geometry — L and t — enters through a(-, -;p) and ultimately the crq{p). 
For our particular problem, Q = 15; if we freeze (fix) all parameters except L 
and t (such that Peff = 2), Q = 8; if we freeze only L and t (such that Pefj = 5), 
Q = 6. 

In the context of design, optimization, and control, we require very rapid 
response and many output evaluations. Our goal is thus to construct an approx- 
imation to u(p), ü(p), and hence approximation to s(p), s(p) = £°(ü(p)), which 

2Here Y = Hx(Ci), the space of functions that are square integrable and that have square 
integrable first (distributional) derivatives over the fin reference domain Cl. The inner product 
(w, v)y may be chosen to be J  Vto • Vv + wv. 



is (i) certifiably accurate, and (ii) very efficient in the limit of many evaluations. 
By the former we mean that the error in our approximate output, |s(/z) — s(ß)\, 
is guaranteed to be less than a prescribed tolerance e; by the latter we mean 
that, following an initial fixed investment, the additional incremental cost to 
evaluate s(/x) for any new fj, 6 V is much less than the effort required to directly 
compute S(/J,) = £°(U(IJ,)) by (say) standard finite element approximation. 

2    Reduced-Basis Approximation 

Reduced-basis methods (e.g., [5, 6, 7]) are a "parameter-space" version of weighted- 
residual (here Galerkin) approximation. To define our reduced-basis procedure, 
we first introduce a sample set in parameter space, SN — {/zj,... ,/J.N}, and 
associated reduced-basis space WN = span{£„ = u(/zn),n = 1,... ,N}, where 
u(/j,n) satisfies (1) for /J, — /j,n G V (note /u* refers to the ith component of the 
P-tuple \x, whereas ßn refers to the nth P-tuple in SN). We then require our 
reduced-basis approximation to u(/x) for any given fi, uN(ß) G WN C Y, to 
satisfy 

a(uN(fi),v,[i)=t{v),Vv£WN; (3) 

the reduced-basis approximation to s(n) can subsequently be evaluated as sN(ß) = 
£°(uN(n)). 

It is a simple matter to show that 

Nf.AW     ^     h     ™;~     \\„.(.A      .„JVi \\u(ß) - U
N
((J.)\\Y < ^ w mm ^ ||«(/i) - w« ||y, (4) 

which states that our approximation is optimal in the Y norm. It can also be 
readily shown for our particular problem that 

s(ri = sN(ß) + a(eN(ri,eN(ßy,fi), (5) 

where eN =u — uN. It follows from (4),(5), and the continuity of a that 

KM) - *NM\ < A   min    ||u(M) - WN
\\Y)

2
; (6) 

a  wNewN 

thus our output approximation is also optimal. 
We must, of course, also understand the extent to which the best wN in WN 

can, indeed, approximate the requisite temperature distribution. The essential 
point is that, although WN clearly does not have any approximation properties 
for general functions in Y, simple interpolation arguments in parameter space 
suggest that WN should approximate well u(ß) even for very modest N; indeed, 
exponential convergence is obtained in N for sufficiently smooth /^-dependence 
(e.g., [6, 7]). It is for this reason that, even in high-dimensional (large P) 
parameter spaces, reduced-basis methods continue to perform well — indeed, 
thanks to (6), much better than ad hoc, uncontrolled "non-state-space" fits of 
(fj,,s(fj,)) input-output pairs. 



We now turn to the computational issues. We first express the reduced-basis 
approximation as 

N 

uN(x;ri = £Uf MOfx) = (uN(rif((x), (7) 

and choose for test functions v = Q(x),i = 1,...,N. We then insert these 
representations into (3) to yield the desired algebraic equations for uN{ß) € ßw, 

N 

5>(Cj,Ci;A0< = *(Ci),   i = i,...,N. (8) 
3 = 1 

Equation (8) can be written in matrix form as 

A{v)uN(p) = L, (9) 

where A(fx) £ 1RNy<N is the SPD matrix with entries Aij(fi) = a((jXi',ß), 1 < 
i,3 < N, and LeR^is the "load" vector with entries Lt = £(d), l<i<N. 

We now invoke (2) to note that 

Q 

9=1 

Q 

= 5>«(MK,-, (10) 
9=1 

where the matrices Aq € ]RNxN are given by A\* = aq((j,d)> 1- <i,j < N,q = 
1,...,Q. The off-line/on-line decomposition is now clear. In the off-line stage, 
we construct the Aq, q = 1,..., Q. In the on-line stage, for any given /J,, we first 
form A from the Aq according to (10); we next invert (9) to find uN(n); and we 
then compute sN(/i) = £°(uN{n)) = £(uN{fi)) = {uN{ß))TL. As we shall see, 
./V will typically be O(10) for our particular problem. Thus, as required, the 
incremental cost to evaluate sN(n) for any given new fi is very small: 0(N2Q) 
to form A(fi); 0(N3) to invert (the typically dense) A(fj.) system; and O(N) to 
evaluate sN(n) from uN(fi). 

The above a priori results tell us only that we are doing as well as possible; 
it does not tell us how well we are doing. Since the error in our output is not 
known, the minimal number of basis functions required to satisfy the desired 
error tolerance can not be ascertained. As a result, either too many or too 
few functions are retained; the former results in computational inefficiency, the 
latter in unacceptable uncertainty. We thus need a posteriori error bounds as 
well. 



3    Output Bounds 

To begin, we assume that we may find a function g(fi):V —► M+ and a symmetric 
continuous coercive bilinear form a: Y x Y —> ]R such that 

Q.\\V\\Y < g(fJ,)ä(v,v) < a(v,v,ß)yv G Y, V> £ V, (11) 

for some real positive constant c; for our thermal fin problem we can readily 
find a g(y) and a(w, v) such that (11) is satisfied. The procedure is then simple: 
we first compute e(ii) € Y solution of 

g(lJ,)ä(e(ß),v)=R(v,fi),Vv€Y, (12) 

where R(v; /J.) = £(v) — a(uN, v; fi) is the residual; we then evaluate our bounds 
as 

s»(ri = sN(t,),    s»(ri = sN(ri + AN(ri, (13) 

where AN
(/J,), the bound gap, is given by 

AN{ß)=g^)ä{e{y),e{ti)- (14) 

The notion of output bounds is not restricted to reduced-basis approximations: 
it can also be applied within the context of finite element discretization as well 
as iterative solution strategies [8, 9]. 

We can then show that 

s?(M) < s(fi) < sNfa),    VAT; (15) 

we thus have a certificate of fidelity for sN — it is within AN(ß) of s(fj,). 
To prove the left inequality we appeal to (5) and the coercivity of a. To 
demonstrate the right inequality we first note that R(eN(fj,); n) = £(eN(fj,)) — 
a(uN(fi), eN(ß); y) = a(eN(fi),eN(n);/i), since £(eN(/j,)) = a(u, eN{p);y) from 
(1) fort; = eN(fi); we next choose v = e.N {jj) in (12) to obtain g(fi)ä(e(ß),eN(fx)) -- 
a(ew(^),eJV(/t);/j); then from the right inequality of (11) we have 

AN(n)    =   g((i)ä(e,e) 

=    g(fj,)ä{e-eN,e-eN) + 2a(eN,eN) 

-g^)a{eN,eN) 

>    g(iJ,)ä{e-eN,e-eN) + a(eN,eN)- 

from the left inequality of (11) we thus conclude that A
N

(/J,) > a(eN,eN); a 
comparison of (5) and (13) then completes the proof. 

We can now ascertain, through AN, the accuracy of our output prediction, 
which will in turn permit us to adaptively modify our approximation until the 
prescribed error tolerance e is satisfied. However, it is also critical that AN(fi) 
be a good error estimator; a poor estimator will encourage us to unnecessar- 
ily refine an approximation which is, in fact, adequate. To prevent the latter 
the effectivity T]

N
(IJ,) = AN(ß)/\s(ß) — sN(n)\ should be order unity.  For our 



problem it is simple to prove that T]
N

{JJL) < 7/c, independent of /J, and N; in 
practice, effectivities are typically less than 10, which is adequate given the 
rapid convergence of reduced-basis approximations. 

We now turn to the computational issues.  Prom (2) and (7), (12) can be 
re-written as 

a(e(n),v) = 

VveY. 

We thus see from simple linear superposition that e(/j,) can be expressed as 

yw 9=1 j=i 

where ZQ e Y satisfies a(z0,v) = £(v),\/v S Y, and zq- € Y,j — l,...,N,q = 
1,...,Q, satisfies a{zj,v) = -aq(Q,v),Vv e Y. It then follows that we can 
express AN (/J,) of (14) as 

A"(M) = 
g(p) 

a(zo,z0) + 

Co 

g=l j = l 
A? 

E E E Etr'^cr''^)^(/i)^(M)a(z?,i«') 
g=l9' = lj = lj' = l % *- ' 

(16) 

S+(M) then directly follows from (13). 
The off-line/on-line decomposition is now clear.   In the off-line stage we 

compute ZQ and zj-,j = 1,...,N,q — 1,...,Q, and then the inner products 

Co, A^, and T% defined in (16). In the on-line stage, for any given new fj,, and 
given SN

(/J,) and uN(ß) as computed in the on-line stage of the output prediction 
process (Section 2), we evaluate AN(n) as 

A" 00 
S(M) 9=1 j=i 

E E E E^(M)^V)<(M)^(M)^: 
9=1 g' = lj = l j' = l 



and then evaluate s+(AO = sN(ß) + A^/z). The incremental cost to evaluate 
s+(ß) for any given new \x is very small: 0(N2Q2). 

4 Numerical Algorithm 

In the simplest case we take our field and output approximations to be ü(fi) = 
uN(ß) and s(/x) = sN(fi), respectively, for some given N, and then compute 
Aw(^i) to assess the error. However, we can improve upon this recipe: we take 
ü(/x) = uN(n) and s(/x) = sN(n), where uN(ß) and s^/x) are the reduced-basis 
approximations associated with a subspace of WN, WN, in which we select 
only N of our available basis functions. In practice, we include in WN the basis 
functions corresponding to sample points \in closest to the new // of interest; we 
continue to (say) double our space until AN

(/J,) < e (and hence |s(/x) — sN(ß)\ < 
e). If we satisfy our criterion for N < N the adaptive procedure is entirely 
contained within the on-line stage of the procedure, and the complexity of this 
stage is reduced from 0(N2Q + N3 + N2Q2) to 0{N2Q + N3 + N2Q2). Note 
the critical role that our error bound plays in effecting this economy. 

In practice — to ensure that the (n,zo,Zj are actually calculable — we 
replace the infinite-dimensional space Y with a very high-dimensional "truth" 
space YT (e.g., a finite element space associated with a very fine triangulation). 
It follows that we obtain bounds not for s, but rather for ST = £°(UT), where 
UT G YT satisfies a(uT,v;n) = £(v),Vv G YT- The essential point is that YT 

may be chosen very conservatively — and hence the difference between ST and 
s rendered arbitrarily small — since (i) the on-line work and storage are in fact 
independent of the dimension of YT, M, and (ii) the off-line work will remain 
modest since N will typically be quite small. 

5 Results and Discussion 

We first demonstrate the accuracy of the reduced-basis output prediction and 
output bounds by considering the case Pefj = 5 in which L = 2.5 and t = 0.25 
are fixed; the remaining parameters kl, k2, k3, fc4,Bi vary in T>e$ = [0.1,10]4 x 
[0.01,1]. The sample points for SN are chosen randomly (uniformly) over Ve$\ 
the new value of \i to which we apply the reduced-basis approximation is A:1 = 
0.5, A;2 = 1.0, fc3 = 3.0, fc4 = 9.0, Bi = 0.6 (similar results are obtained at other 
points in Peff)- We present in Table 1 the actual error |s(/i) — sN(fj,)\; the 
estimated error A

N
(/J.) (our strict upper bound for \s(ß) - S

N
(IJ,)\); and the 

effectivity r)N(fi) (the ratio of the estimated and actual errors). We observe the 
high accuracy and rapid convergence of the reduced-basis prediction, even for 
this relatively high-dimensional parameter space; and the very good accuracy 
(low effectivity) of our error bound AN(fi). The combination of high accuracy 
and certifiable fidelity permits us to proceed with an extremely low number of 
modes. 



N |S-S"| AN VN 

10 4.68 x 10-3 1.43 x 10~2 3.06 
20 4.70 x 10~4 1.13 x 10~3 2.40 
30 3.04 x 10-4 1.04 x 10~3 3.43 
40 1.08 x 10~4 4.61 x 10-4 4.27 
50 2.47 x 10~5 6.89 x 10~5 2.78 

Table 1 

As regards computational cost, in the limit of "infinitely many" evaluations, 
the calculation of s(p) to within 0.1% of ST is roughly 24 times faster than di- 
rect calculation of ST = £°(UT); here UT is our underlying "truth" finite element 
approximation. The breakeven point at which the reduced-basis approximation 
first becomes less expensive than direct evaluation of ST is roughly 250 evalua- 
tions. These are fair comparisons: our "truth" approximation here is not overly 
fine, and our solution strategy for UT € YT (an ILU-preconditioned conjugate- 
gradient procedure) is quite efficient. The reduced-basis approach is much faster 
simply because the dimension of WN, N, is much smaller than the dimension 
of YT, M (which more than compensates for the loss of sparsity in A). For more 
difficult problems that require larger M, or that are not as amenable to fast 
solution methods on YT, the relative efficiency of the reduced-basis approach is 
even more dramatic. 

The obvious advantage of the reduced-basis approach within the design, op- 
timization, and control environment is the very rapid response. However, the 
"blackbox" nature of the on-line component of the procedure has other advan- 
tages. In particular, the on-line code is simple, non-proprietary, and completely 
decoupled from the (often complicated) off-line "truth" code. This is particu- 
larly important in multidisciplinary design optimization, in which various mod- 
els and approximations must be integrated. 

We close this section with a more applied example. We now fix all parameters 
except L and t, so that Peff = 2; (L,t) vary in Deff = [2.0,3.0] x [0.1,0.5]. We 
choose for our two outputs the volume of the fin, V, and the root average 
temperature, s. As our "design exercise" we now construct the achievable set 
— all those (V, s) pairs associated with some (L,t) in Veff; the result, based 
on many evaluations of (V, s+) for different values of (L,t) € 2?eff> is shown in 

Figure 2. We present the results in terms of s+ rather than sN to ensure that 
the actual temperature ST will always be lower than our predictions (that is, 
conservative); and we choose N such that s+ is always within 0.1% of ST to 
ensure that the design process is not misled by inaccurate predictions. Given 
the obvious preferences of lower volume and lower temperature, the designer 
will be most interested in the lower left boundary of the achievable set — the 
Pareto efficient frontier; although this boundary can of course be found without 
constructing the entire achievable set, many evaluations of the outputs will still 
be required. 
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6    Generalizations and Issues 

Many of the assumptions that we have introduced are assumptions of conve- 
nience and exposition, not necessity. First, the output functional 1° need not 
be same as the inhomogeneity l\ with the introduction of an adjoint (or dual) 
problem [2], our results above extend to the more general case. Second, the func- 
tion g(/j,) need not be known a priori: g(/j,) is related to an eigenvalue problem 
which can itself be readily approximated by a reduced-basis space constructed 
as the span of appropriate eigenfunctions (in theory we can now only prove 
asymptotic bounding properties as N —> oo, however in practice the reduced- 
basis eigenvalue approximation converges very rapidly, and there is thus little 
loss of certainty). Third, these same notions extend, with some modification, to 
noncoercive problems, where g(fi) is now in fact the inf-sup stability parameter 
[3, 4]. Finally, nonsymmetric operators are readily treated, as are certain classes 
of nonlinearity in the state variables (e.g., eigenvalue problems [1]). 

Perhaps the most limiting assumption is (2), affine dependence on the pa- 
rameter functions. In some cases (2) may indeed apply, but Q may be rather 
large. In such cases we can reduce the complexity and storage of the off-line 
and on-line stages from 0(Q2) to 0(Q) by introducing a reduced-basis approx- 
imation of the error equation (12) for a suitably chosen "staggered" sample set 
S^r and associated reduced-basis space constructed as the span of appropriate 
error functions. These ideas also extend to the case in which the parameter de- 
pendence can not be expressed (or accurately approximated) as in (2); however 
we now need to at least partially abandon the blackbox nature of the on-line 
stage of computation, allowing evaluation (though not inversion) of the truth- 
approximation operator, as well as storage of some reduced-basis vectors of size 
J\f. These methods are currently under development. 
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